Particle Size Controls on Water Adsorption and Condensation Regimes at Mineral Surfaces
نویسندگان
چکیده
Atmospheric water vapour interacting with hydrophilic mineral surfaces can produce water films of various thicknesses and structures. In this work we show that mineral particle size controls water loadings achieved by water vapour deposition on 21 contrasting mineral samples exposed to atmospheres of up to ~16 Torr water (70% relative humidity at 25 °C). Submicrometer-sized particles hosted up to ~5 monolayers of water, while micrometer-sized particles up to several thousand monolayers. All films exhibited vibrational spectroscopic signals akin to liquid water, yet with a disrupted network of hydrogen bonds. Water adsorption isotherms were predicted using models (1- or 2- term Freundlich and Do-Do models) describing an adsorption and a condensation regime, respectively pertaining to the binding of water onto mineral surfaces and water film growth by water-water interactions. The Hygroscopic Growth Theory could also account for the particle size dependence on condensable water loadings under the premise that larger particles have a greater propensity of exhibiting of surface regions and interparticle spacings facilitating water condensation reactions. Our work should impact our ability to predict water film formation at mineral surfaces of contrasting particle sizes, and should thus contribute to our understanding of water adsorption and condensation reactions occuring in nature.
منابع مشابه
Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface
The adsorption of silica nanoparticles onto representative mineral surfaces and at the decane/water interface was studied. The effects of particle size (the mean diameters from 5 to 75 nm), concentration and surface type on the adsorption were studied in detail. Silica nanoparticles with four different surfaces [unmodified, surface modified with anionic (sulfonate), cationic (quaternary ammoniu...
متن کاملStudying the Adsorption Behavior of Copper Ions in Industrial Wastewater, Using Modified Electrospun Polymeric Nano Fiber
Background & Aims of the Study: Soil and water pollution to heavy metals is a serious threat for environment and human health. Finding an effective way for refining water from these metals is very important. The aim of this study was modifying electrospun polymeric nano fibers and studying its efficiency for copper ion omission in water solutions. Materials & Method...
متن کاملAdsorption hysteresis in nanopores
Capillary condensation hysteresis in nanopores is studied by Monte Carlo simulations and the nonlocal density functional theory. Comparing the theoretical results with the experimental data on low temperature sorption of nitrogen and argon in cylindrical channels of mesoporous siliceous molecular sieves of MCM-41 type, we have revealed four qualitatively different sorption regimes depending on ...
متن کاملAn innovative application of (NiXZnX–X Fe2O4) Mineral nanoparticles for adsorption of Malachite green dye from wastewater effluents
In this research work, the Ni-Zn Ferrite Mineral Nanoparticles (NZFMN), as a novel nanoadsorbent, was used for the removal of the Green Malachite (GM) dye from aqueous solutions by in a batch and fixed bed column. Firstly, the NZFMN adsorption properties were investigated. The effects of the process parameters including the contact time, adsorbent dosage, solution pH, and GM initial concentrati...
متن کاملEffect of Particle Size of NaX Zeolite on Adsorption of CO2/CH4
In the present work, the nano-NaX zeolite and micro-NaX zeolite were synthesized via hydrothermal method. Then, the adsorption capacities and isotherms of pure gases CO2 and CH4 on the synthesized zeolite nanoparticles were determined at three temperatures of 288, 298 and 308 K and various pressures from 1 up to 20 bar. Adsorption capacities of CO2 on the nano-sized zeolites NaX were showed to ...
متن کامل